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Abstract In this work we report the development of an implicit finite difference
numerical method for the one space dimension time-fractional advection-diffusion
equation, on a bounded domain, to model the transient electrical current of the time
of flight experiment of disordered (e.g. organic) semiconductors. Some numerical
experiments and simulation of experimental data are carried out showing that the
presented model describes accurately the transient electrical current.
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1 Introduction

Many processes in physics and engineering lead to models with ordinary or partial
fractional differential equations, and therefore the approximation of fractional deriva-
tives is nowadays a very hot topic. As it is well known, different definitions of fractional
derivatives exist in the literature and many have been the contributions for the devel-
opment of fractional calculus in the last decades. For the main analytical results and
numerical methods derived so far for fractional differential equations, and also for
their potential applications, we refer the interested reader to the recent books [1–3]
and the references therein. Here we do not intend to discuss or compare the different
kinds of fractional derivatives, although we recognize that the Riemann–Liouville and
the Caputo derivatives are the most popular, especially the last one if application prob-
lems are considered [2]. The Riemann–Liouville derivative of a function y is defined
by [3]:

RL Dα = D�α� J �α�−α y(t),

where Jβ being the Riemann–Liouville integral operator,

Jβ y(t) = 1

Γ (β)

∫ t

0
(t − s)β−1 y(s) ds, t > 0,

and D�α� is the classical integer order derivative, where �α� is the smallest integer
greater than or equal to α, and �α� denotes the biggest integer smaller than α.

The Caputo derivative is given by [2]:

Dα y(t) =RL Dα(y − T [y])(t), t > 0

where T [y] is the Taylor polynomial of degree �α� for y, centered at 0. Alternatively,
we can also write [2]:

Dα y(t) = 1

Γ (1 − α)

∫ t

0
(t − s)−α y�α�(s) ds. (1)

An application of Fractional Calculus appears also in modelling of the time-of-
flight (TOF) experiments. In a TOF experiment, the transient current through a thin
layer of material sandwiched between two parallel electrodes is measured. This cur-
rent is the result of the motion, under the influence of an externally applied electric
field E directed normally to the electrodes, of excess charge carriers generated by a
laser or voltage pulse. Results from this kind of experiment for disordered materi-
als, namely organic semiconductors, and contrary to their crystalline inorganic coun-
terparts, usually exhibit an anomalous dispersive behaviour [4]. Notice that organic
semiconductors have been, in the last decades, the centre of great interest, due to their
properties (transparency, flexibility, low cost), for the fabrication of optoelectronic
devices. In particular, organic solar cells have reached power conversion efficiency
values encouraging further research and improvement in order to use them in large
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scale energy production. To that end, accurate determination of the parameters that
characterize these materials, such as the charge carrier mobility μ, is essential and one
of the methods to measure it is the TOF technique. The transient current I (t) curve
presents two regions with power-law behaviour, separated by the “transit time” ttr :

I (t) ∼
{

t−1+α if t < ttr
t−1−α if t > ttr

, 0 < α < 1. (2)

From experimental I (t) curves, usually the ttr is obtained, graphically, from the inter-
section of the two power-law curves, which is then used to determine the carrier
mobility. Such behaviour is attributed to the trapping of carriers, in localized states
distributed in the mobility gap, for times τ , determined by a relaxation function with
an asymptotic time dependence of the form ∼τ−α , with non integer α. Other possi-
ble physical explanations involve other mechanisms such as phonon assisted hopping
conduction and percolation through conducting states [5].

For disordered semiconductors, considering all spatial variation restricted to one
dimension, it is assumed that the evolution of carrier density, u(x, t), is governed by
a time-fractional advection-diffusion equation of the form [5,6]

∂αu(x, t)

∂tα
+ Wα

∂u(x, t)

∂x
− Dα

∂2u(x, t)

∂x2 = 0, t ∈ (0, T ], x ∈ (0, L), (3)

where 0 < α < 1. Here, the fractional derivative of order α (dispersion parameter),
∂αu(x, t)

∂tα
, which accounts for the carrier trapping in localized states, is considered in

the Caputo sense. Both the fractional drift velocity Wα ∝ μE and the fractional diffu-
sion coefficient Dα are constant. In [6] an analytical expression for the solution of (3)
is obtained in space-Laplace variables, for a Dirac-delta initial carrier distribution, that
can lead to the solution in space-time variables through the numerical inverse Laplace
transform. As it can be seen in that paper the solution of the fractional differential
equation exhibits a sharp behaviour near the origin, therefore, for numerical purposes,
and in order to obtain reasonable accurate results it might be convenient to use a small
step-size for times closer to zero. On the other hand, as it is well known, for the com-
putation of the solution at a certain time level, it is necessary to use the values of the
solution at all the earlier times, the main reason for the known high computational
effort needed in the approximation of fractional differential equations. Obviously, the
smaller the step-size is, the greater the computational cost will be. Therefore, in these
cases, the use of a graded mesh may result on the decreasing of the computational cost
without sacrificing the accuracy of the numerical results. Here we will be interested
in the numerical solution of the general time-fractional advection-dispersion equation
(TFADE):

∂αu(x, t)

∂tα
= −v(x, t)

∂u(x, t)

∂x
+ k(x, t)

∂2u(x, t)

∂x2 + f (x, t), t ∈ (0, T ], x ∈ (0, L),

(4)
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with initial condition
u(x, 0) = g(x), x ∈ (0, L), (5)

and boundary conditions

u(0, t) = φ0(t), u(L , t) = φL(t), t ∈ (0, T ], (6)

where the fractional derivative is in the Caputo sense, and 0 < α < 1. The unknown
function u is commonly referred as the particle number density, v is the fractional
drift velocity and k is the fractional diffusion coefficient. We assume that g, f , φ0 and
φL are continuous functions in their respective domains and we assume further that
k(x, t) ≥ 0 and v(x, t) ≥ 0, for all x ∈ [0, L], t ∈ (0, T ], so that the “fluid” moves
from the left to the right.

TFADEs with an additional velocity field and under the influence of an external force
field arise in many physical models where anomalous dispersion occurs [7–10]. Finite
difference schemes are the most common for the numerical solution of TFADEs, and
usually they are first-order accurate with respect to time and obtained via discretization
of the problem in uniform meshes (see for example [10] and the references therein).
That was in fact what we have done in [11] but no theoretical analysis had been
provided. Here we intend to derive formulas for the numerical approximation of the
Caputo derivative when a graded mesh is considered, and establish the orders of
the respective approximations and based on this we develop an implicit numerical
method for the solution of time-fractional advection-diffusion equation. This will be
presented in the next section. In Sect. 2 we show that the described numerical scheme
is unconditionally stable and convergent. In Sect. 3 we test the numerical method
through some examples that will be considered in Sect. 4 for the approximation of
transient currents in TOF experiments.

2 Numerical scheme

In this section we develop an implicit numerical method for the approximate solution
of (4)–(6). In order to do that we need to approximate the time-fractional and space
derivatives. Concerning the last one we consider a uniform mesh in the interval [0, L],
defined by the grid-points xi = ih, i = 0, 1, . . . , K , where h = L

K , and we use the
following finite difference approximations:

∂u(xi , t)

∂x
≈ u(xi , t) − u(xi−1, t)

h
, (7)

∂2u(xi , t)

∂x2 ≈ u(xi+1, t) − 2u(xi , t) + u(xi−1, t)

h2 , i = 1, . . . , K − 1. (8)

For the numerical approximation of the Caputo derivative of order α on the interval
[0, T ], we will use a non-uniform mesh. In order to do that, we consider a partition of
this subinterval into n subintervals defined by the mesh-points:
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ti =
(

i

n

)r

T,

where the grading exponent r ≥ 1 is a given constant. The length of each one of the
intervals defined with this partition is:

τi = ti+1 − ti = (i + 1)r − ir

nr
T, i = 0, 1, . . . , n − 1.

Note that if r = 1 we obtain a uniform mesh, that is, a mesh where all the subintervals
in the partition have the same length (τi = τ = T

n , i = 0, 1, . . . , n − 1), while if
r > 1, the grid-points are more densely placed in the left-hand side of the interval
[0, T ].

If 0 < α < 1, according to (1), we can write:

Dα y(t) = 1

Γ (1 − α)

∫ t

0
(t − s)−α y′(s) ds. (9)

A common way to approximate (9) is to consider a uniform mesh in the interval
[0, T ] by considering a partition into n subintervals with equal length τ and at t = tk ,
k = 1, 2, . . . , n, consider the following approximation:

Dα y(tk) = 1

Γ (1 − α)

∫ tk

0
(tk − s)−α y′(s) ds

= 1

Γ (1 − α)

k−1∑
j=0

∫ t j+1

t j

(tk − s)−α y′(s) ds

≈ 1

Γ (1 − α)

k−1∑
j=0

∫ t j+1

t j

(tk − s)−α y(t j+1) − y(t j )

τ
ds,

obtaining in this way, the first order approximation, if y ∈ C2([0, T ]) (see for example
[12]):

Dα y(tk) ≈ τ−α

Γ (2 − α)

k−1∑
j=0

b j
(
y(tk− j ) − y(tk−1− j )

)
, (10)

where
b j = ( j + 1)1−α − j1−α, j = 0, 1, . . . , n. (11)

Here, when considering a non-uniform mesh we proceed analogously:

Dα y(tk) = 1

Γ (1 − α)

∫ tk

0
(tk − s)−α y′(s) ds

≈ 1

Γ (1 − α)

k−1∑
j=0

∫ t j+1

t j

(tk − s)−α y(t j+1) − y(t j )

τ j
ds.
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Since
∫ t j+1

t j

(tk − s)−α ds = 1

1 − α

(
(tk − t j )

1−α − (tk − t j+1)
1−α

)

= (t j+1 − t j )
1−α

1 − α

[(
1 + tk − t j+1

t j+1 − t j

)1−α

−
(

−1 + tk − t j

t j+1 − t j

)1−α
]

= τ 1−α
j

1 − α

[(
kr − jr

( j + 1)r − jr

)1−α

−
(

kr − ( j + 1)r

( j + 1)r − jr

)1−α
]

, (12)

we obtain the following approximation:

Dα y(tk) ≈ 1

Γ (2 − α)

k−1∑
j=0

τ−α
j a j,k

(
y(t j+1) − y(t j )

) = D̃α yk, (13)

where

a j,k =
(

kr − jr

( j + 1)r − jr

)1−α

−
(

kr − ( j + 1)r

( j + 1)r − jr

)1−α

, (14)

j = 0, 1, . . . , k − 1, k = 1, . . . , n. Note that if in (13) we take r = 1 we obtain (10).
Concerning the order of the approximation we have

∣∣∣Dα y(tk) − D̃α yk

∣∣∣ ≤ 1

Γ (1 − α)

k−1∑
j=0

∫ t j+1

t j

(tk − s)−α

∣∣∣∣y′(s) − y(t j+1) − y(t j )

τ j

∣∣∣∣ ds

≤ C̃

Γ (1 − α)

k−1∑
j=0

∫ t j+1

t j

(tk − s)−ατ j ds

≤ C̃τ

Γ (1 − α)

k−1∑
j=0

∫ t j+1

t j

(tk − s)−α ds

= C̃τ

Γ (1 − α)

∫ tk

0
(tk − s)−α ds

= C̃τ

Γ (1 − α)
tαk ≤ Cτ,

where τ = max j=0,1,...,n−1 τ j .
Using (13), we obtain:

∂αu(xi , tl)

∂tα
≈ 1

Γ (2 − α)

l−1∑
j=0

τ−α
j a j,l

(
u(xi , t j+1) − u(xi , t j )

)
, (15)

i = 1, . . . , K − 1, l = 1, . . . , n, where the coefficients a j,k are defined in (14).
Denoting by Ul

i ≈ u(xi , tl), vl
i = v(xi , tl), kl

i = k(xi , tl), f l
i = f (xi , tl) and
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substituting (7), (8) and (15) in (4), we obtain the following implicit numerical
scheme:

1

Γ (2−α)

l−1∑
j=0

τ−α
j a j,l

(
U j+1

i −U j
i

)
= −vl

i

Ul
i − Ul

i−1

h
+ kl

i

Ul
i+1 − 2Ul

i + Ul
i−1

h2 + f l
i ,

(16)

i = 1, . . . , K − 1, l = 1, . . . , n, where, according to the initial and boundary condi-
tions (5) and (6), we have

U 0
i = g(xi ), i = 1, . . . , K − 1,

Ul
0 = φ0(tl), Ul

K = φL(tl), l = 1, . . . , n.

2.1 Stability of the numerical scheme

In this section, we prove the stability and the convergence of the numerical scheme
described in the previous section, which can be written as

T1Ul
i = T2Ul−1

i + f l
i , i = 1, . . . , K − 1, l = 1, . . . , n, (17)

where

T1Ul
i = τ−α

l−1

Γ (2 − α)
Ul

i + vl
i

Ul
i − Ul

i−1

h
− kl

i

Ul
i+1 − 2Ul

i + Ul
i−1

h2 ,

T2Ul−1
i = τ−α

l−1

Γ (2 − α)
Ul−1

i − 1

Γ (2 − α)

l−2∑
j=0

τ−α
j a j,l

(
U j+1

i − U j
i

)
.

We start with some auxiliary results that will be needed later.

Lemma 1 The coefficients a j,l , j = 0, . . . , l − 2, l = 1, . . . , n, defined by (14)
satisfy:

a j,l > 0, (18)
l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

)
= −τ−α

0 a0,l + τ−α
l−1, (19)

τ−α
j+1a j+1,l > τ−α

j a j,l . (20)

Proof (18) and (19) are straightforward so we just prove (20). Taking (12) into account,
we have

τ 1−α
j

1 − α
a j,l =

∫ t j+1

t j

(tk − s)−α ds, (21)
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τ 1−α
j+1

1 − α
a j+1,l =

∫ t j+2

t j+1

(tk − s)−α ds. (22)

Therefore, there must exist ξ1 ∈ (t j , t j+1) and ξ2 ∈ (t j+1, t j+2) such that

τ 1−α
j

1 − α
a j,l = (tk − ξ1)

−ατ j ds, (23)

τ 1−α
j+1

1 − α
a j+1,l = (tk − ξ2)

−ατ j+1 ds, (24)

and then

τ−α
j+1a j+1,l − τ−α

j a j,l = (1 − α)
(
(tk − ξ2)

−α − (tk − ξ1)
−α

)
> 0

since 0 < α < 1 and ξ1 < ξ2. �

In order to prove the stability of the numerical scheme, let us assume that the initial
data has error ε0

i , that is, let us assume that g̃(xi ) = g(xi ) + ε0
i , i = 1, 2, . . . , K − 1,

and let Ul
i and Ũ l

i be the solutions of (17) corresponding to the initial data g and g̃,
respectively. Defining εl

i = Ul
i − Ũ l

i , we have

T1ε
l
i = T2ε

l−1
i , i = 1, 2, . . . , K − 1, l = 1, 2, . . . , n.

Setting
∥∥El

∥∥∞ = max1≤i≤K−1
∣∣εl

i

∣∣, we next prove, using mathematical induction,
that

∥∥∥El
∥∥∥∞ ≤

∥∥∥E0
∥∥∥∞

is satisfied for all l = 1, 2, . . . , n.
For l = 1, let p ∈ N be such that

∥∥E1
∥∥∞ = max1≤i≤K−1

∣∣ε1
i

∣∣ =
∣∣∣ε1

p

∣∣∣. Then,

τ−α
0

Γ (2 − α)

∥∥∥E1
∥∥∥∞ = τ−α

0

Γ (2 − α)

∣∣∣ε1
p

∣∣∣

= τ−α
0

Γ (2 − α)

∣∣∣ε1
p

∣∣∣ + v1
p

∣∣∣ε1
p

∣∣∣ −
∣∣∣ε1

p

∣∣∣
h

+ k1
p

2
∣∣∣ε1

p

∣∣∣ − 2
∣∣∣ε1

p

∣∣∣
h2

≤ τ−α
0

Γ (2 − α)

∣∣∣ε1
p

∣∣∣ + v1
p

∣∣∣ε1
p

∣∣∣ −
∣∣∣ε1

p−1

∣∣∣
h

+ k1
p

2
∣∣∣ε1

p

∣∣∣ −
∣∣∣ε1

p+1

∣∣∣ −
∣∣∣ε1

p−1

∣∣∣
h2 .
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Since v1
p and k1

p are nonnegative, then

τ−α
0

Γ (2 − α)

∥∥∥E1
∥∥∥∞ ≤

∣∣∣∣∣
τ−α

0

Γ (2 − α)
ε1

p + v1
p

ε1
p − ε1

p−1

h
− k1

p

ε1
p+1 − 2ε1

p + ε1
p−1

h2

∣∣∣∣∣
=

∣∣∣T1ε
1
p

∣∣∣ =
∣∣∣T2ε

0
p

∣∣∣ =
∣∣∣∣∣

τ−α
0

Γ (2 − α)
ε0

p

∣∣∣∣∣ ≤ τ−α
0

Γ (2 − α)

∥∥∥E0
∥∥∥∞ ,

and then if follows that
∥∥E1

∥∥∞ ≤ ∥∥E0
∥∥∞.

Let us now assume that
∥∥E j

∥∥∞ ≤ ∥∥E0
∥∥∞, j = 1, . . . , l − 1, and assume also that

p ∈ N is such that
∥∥El

∥∥∞ =
∣∣∣εl

p

∣∣∣. Hence following the same steps as above,

τ−α
l−1

Γ (2 − α)

∥∥∥El
∥∥∥∞ = τ−α

l−1

Γ (2 − α)

∣∣∣εl
p

∣∣∣ ≤
∣∣∣T1ε

l
p

∣∣∣ =
∣∣∣T2ε

l−1
p

∣∣∣

=
∣∣∣∣∣∣

τ−α
l−1

Γ (2 − α)
εl−1

p − 1

Γ (2 − α)

l−2∑
j=0

τ−α
j a j,l

(
ε

j+1
p − ε

j
p

)∣∣∣∣∣∣

= 1

Γ (2 − α)

∣∣∣∣∣∣τ
−α
0 a0,lε

0
p +

l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

)
ε

j+1
p

∣∣∣∣∣∣ .

Using (20), the induction hypothesis and (19), it follows that:

τ−α
l−1

Γ (2 − α)

∥∥∥El
∥∥∥∞ ≤ 1

Γ (2−α)

⎛
⎝τ−α

0 a0,l

∣∣∣ε0
p

∣∣∣+
l−2∑
j=0

(
τ−α

j+1a j+1,l −τ−α
j a j,l

) ∣∣∣ε j+1
p

∣∣∣
⎞
⎠

≤
∥∥E0

∥∥∞
Γ (2 − α)

⎛
⎝τ−α

0 a0,l +
l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

)⎞
⎠

=
∥∥E0

∥∥∞
Γ (2 − α)

τα
l−1.

We can conclude that
∥∥El

∥∥∞ ≤ ∥∥E0
∥∥∞, l = 1, 2, . . . , n, and then the following

result is proved.

Theorem 1 The numerical scheme (17) is unconditionally stable.

2.2 Convergence of the numerical scheme

In order to prove the convergence order of the numerical scheme, let us first note that
taking into account (7), (8) and (15), the solution of (4)–(6) satisfies:
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1

Γ (2 − α)

l−1∑
j=0

τ−α
j a j,l

(
u(xi , t j+1) − u(xi , t j )

) = −vl
i
u(xi , tl) − u(xi−1, tl)

h

+ kl
i
u(xi+1, tl) − 2u(xi , tl) + u(xi−1, tl)

h2 + f l
i + Rl

i ,

i = 1, . . . , K − 1, l = 1, . . . , n, where
∥∥Rl

∥∥∞ = max1≤i≤K−1
∣∣Rl

∣∣ ≤ C1(τ + h),
being C1 a positive constant not depending on τ or h, and τ = max j=0,...,n−1

∣∣τ j
∣∣.

Define the error at every point of the mesh by

el
i = u(xi , t l) − Ul

i , i = 1, . . . , K − 1, l = 1, . . . , n,

and el = (el
1 el

2 . . . el
K−1)

T . Obviously e0 = (0 0 . . . 0)T , and

T1el
i = T2el

i−1 + Rl
i , i = . . . , K − 1, l = 1, . . . , n.

We first prove the following result:

Lemma 2 There exists a positive constant C1 not depending on τ and h such that:

∥∥∥el
∥∥∥∞ ≤ C1(τ + h)

1
Γ (2−α)

(
τ−α

l−1 − ∑l−2
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

)) , l = 1, 2, . . . , n.

(25)

Proof We use mathematical induction to prove (25). Similarly to the proof of stability,

for l = 1, let p ∈ N be such that
∥∥e1

∥∥∞ = max1≤i≤K−1
∣∣e1

i

∣∣ =
∣∣∣e1

p

∣∣∣. Then,

τ−α
0

Γ (2 − α)

∥∥∥e1
∥∥∥∞ = τ−α

0

Γ (2 − α)

∣∣∣e1
p

∣∣∣
=

∣∣∣T1e1
∣∣∣ =

∣∣∣T2e0
p + R1

p

∣∣∣ =
∣∣∣R1

p

∣∣∣ ≤
∥∥∥R1

∥∥∥∞ ≤ C1(τ + h),

and then (25) is satisfied for l = 1. Assume now that

∥∥∥e j
∥∥∥∞ ≤ C1(τ + h)

1
Γ (2−α)

(
τ−α

j−1 − ∑ j−2
m=0

(
τ−α

m+1am+1,l − τ−α
m am,l

)) , j = 2, . . . , l − 1,

and that p ∈ N is such that
∥∥el

∥∥∞ =
∣∣∣el

p

∣∣∣. Hence, defining

Aα
l = 1

Γ (2 − α)

⎛
⎝τ−α

l−1 −
l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

)⎞
⎠ ,
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we have:

τ−α
l−1

Γ (2 − α)

∥∥∥el
∥∥∥∞ = τ−α

l−1

Γ (2 − α)

∣∣∣el
p

∣∣∣ ≤
∣∣∣T1el

p

∣∣∣ =
∣∣∣T2ε

l−1
p + Rl

p

∣∣∣

=
∣∣∣∣∣∣

τ−α
l−1

Γ (2 − α)
εl−1

p − 1

Γ (2 − α)

l−2∑
j=0

τ−α
j a j,l

(
ε

j+1
p − ε

j
p

)
+ Rl

p

∣∣∣∣∣∣

=
∣∣∣∣∣∣

1

Γ (2 − α)

l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

)
e j

p + Rl
p

∣∣∣∣∣∣

≤ 1

Γ (2 − α)

l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

) ∥∥∥e j
∥∥∥∞ +

∥∥∥Rl
∥∥∥∞

≤ 1

Γ (2 − α)

l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

) C1(τ + h)

Aα
j

+ C1(τ + h)

≤ 1

Γ (2 − α)

l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

) C1(τ + h)

Aα
l

+ C1(τ + h)

= C1(τ + h)

Aα
l

τ−α
l−1

Γ (2 − α)

and then the result is proved. �
The result about the convergence order is given in the next theorem:

Theorem 2 There exists a positive constant C not depending on τ and h, such that∥∥∥el
∥∥∥∞ ≤ C(τ + h), l = 1, . . . , n.

Proof First note that

τ−α
l−1 +

l−2∑
j=0

(
τ−α

j+1a j+1,l − τ−α
j a j,l

)
= τ−α

0 a0,l = τ−α
0

((
lr )1−α − (

lr − 1
)1−α

)
.

Since

lim
l→∞

(lr )−α

(lr )1−α − (lr − 1)1−α
= lim

η→∞
η−α

η1−α − (η − 1)1−α
= 1

1 − α
,

there must exist a positive constant C2, not depending on τ and h, such that (25)
becomes ∥∥∥el

∥∥∥∞ ≤ C1C2(τ + h)
1

Γ (2−α)
(lr )−ατ−α

0

= C1C2(τ + h)
1

Γ (2−α)
t−α
l

≤ C(τ + h).

�
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3 Numerical results

In order to illustrate the obtained theoretical results about stability and convergence
of the numerical scheme presented in the previous section, we have carried out out
some numerical experiments with the following examples:

∂0.8u(x, t)

∂t0.8 = −0.5
∂u(x, t)

∂x
+ 0.025

∂2u(x, t)

∂x2 , t ∈ (0, 1], x ∈ (0, 0.5),

u(x, 0) = 20 exp
(
−2 × 103(x − 0.2)2

)
, x ∈ (0, 0.5),

u(0, t) = u(0.5, t) = 0, t ∈ (0, 1], (26)

∂0.45u(x, t)

∂t0.45
= −0.3

∂u(x, t)

∂x
+ 5 × 10−7 ∂2u(x, t)

∂x2 , t ∈ (0, 1], x ∈ (0, 0.5),

u(x, 0) = 169 exp
(
−2 × 103(x − 0.2)2

)
, x ∈ (0, 0.5),

u(0, t) = u(0.5, t) = 0, t ∈ (0, 1], (27)

that will be useful for the TOF model.
In Tables 1, 2, 3 and 4 we present some numerical results obtained with the described

numerical method. The experimental orders of convergence for the space and time
variables are computed according to Aitken formula and are denoted by E OCx and
E OCt , respectively.

Table 1 Approximate solution of example (26) at the point (x, t) = (0.25, 1), obtained with the numerical
scheme (17) with K = 10,000

n r = 1 r = 3 r = 5

τ u(0.25, 1) EOCt τ u(0.25, 1) EOCt τ u(0.25, 1) EOCt

10 0.1 0.538152 − ∼= 0.271 0.553108 − ∼= 0.4095 0.593723 −
20 0.05 0.512566 − ∼= 0.1426 0.516463 − ∼= 0.2262 0.532749 −
40 0.025 0.501377 1.19 ∼= 0.0731 0.501991 1.45 ∼= 0.1189 0.508632 1.56

80 0.0125 0.496266 1.13 ∼= 0.0370 0.496057 1.33 ∼= 0.06096 0.498836 1.40

160 0.00625 0.493871 1.09 ∼= 0.0186 0.493558 1.27 ∼= 0.03086 0.494741 1.31

Table 2 Approximate solution
of example (26) at the point
(x, t) = (0.25, 1), obtained with
the numerical scheme (17) with
r = 5 and n = 1,000

K u(0.25, 1) EOCx

8 0.497344 −
16 0.453606 −
32 0.475712 0.98

64 0.484099 1.39

128 0.488142 1.05

256 0.490117 1.03
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Table 3 Approximate solution of example (27) at the point (x, t) = (0.25, 1), obtained with the numerical
scheme (17) with r = 5 and K = 10,000

n r = 1 r = 3 r = 5

τ u(0.25, 1) EOCt τ u(0.25, 1) EOCt τ u(0.25, 1) EOCt

10 0.1 13.6513 − ∼= 0.271 13.4244 − ∼= 0.4095 13.4851 −
20 0.05 13.484 − ∼= 0.1426 13.3601 − ∼= 0.2262 13.3788 −
40 0.025 13.4055 1.09 ∼= 0.0731 13.3403 1.84 ∼= 0.1189 13.3465 2.01

80 0.0125 13.3676 1.05 ∼= 0.0370 13.334 1.70 ∼= 0.06096 13.3361 1.75

160 0.00625 13.3491 1.03 ∼= 0.0186 13.3319 1.64 ∼= 0.03086 13.3326 1.65

Table 4 Approximate solution
of example (27) at the point
(x, t) = (0.25, 1), obtained with
the numerical scheme (17) with
r = 5 and n = 1,000

K u(0.25, 1) EOCx

8 15.1411 −
16 13.0871 −
32 13.2839 3.38

64 13.3092 2.95

128 13.3207 1.14

256 13.326 1.10

4 Model for the time of flight experiment

The total measured current I (t), produced by the extraction of carriers from the space
between the electrodes, placed at x = 0 and x = L , is given [6] by the space average
of the current density j (x, t)

I (t) = 1

L

∫ L

0
j (x ′, t)dx ′, (28)

and since

j (x ′, t) = − d

dt

∫ x ′

0
qu(x, t)dx, (29)

where q is the carrier electrical charge, we get

I (t)

q
= − d

dt

∫ L

0
(L − x)u(x, t)dx . (30)

In order to test the above numerical method we simulated TOF experiments con-
sidering absorbing boundary conditions, i.e. u0 = uL = 0, and considered that
the initial carrier number density is gaussian distributed around x = 0.2L , namely
g(x) ∝ exp(−2 × 103(x − 0.2L)2). In Fig. 1 the log–log plots of I (t) are presented
for Wα = 40/L(s−α) and several values of α, obtained with the numerical method
described above, with r = 5, K = 50 and n = 200, which shows the effect of the
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Fig. 1 Log–log plots of the
transient currents for
W = 40/L(s−α),
D = 1/L2(s−α) and several
values of α: 1.00 (dotted), 0.75
(dashed), 0.50 (dotdashed) and
0.25 (solid )

10 11 10 9 10 7 10 5 0.001 0.1
0.01

10

10
4

10
7
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10
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I
t
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u.

Fig. 2 Experimental data
(symbol), digitized from Figure
5 of [4], and approximation
(solid line) obtained with the
numerical method from (27),
with r = 5

0.05 0.1 0.5 1. 5.

0.1

0.2

0.5

1.

2.

5.

t ttr

I
t
I
t tr

dispersion parameter α on the current transient curves behaviour. Notice in particular
the position of ttr as the dispersion parameter varies.

Additionally, two sets of published TOF experimental data, digitized from Figures
5 and 6 of [4], were approximated using the above method, corresponding to the
examples (27) and (26), with the space coordinate expressed as fraction of the material
thickness L , that is 0 ≤ x ≤ 1.

The first data set, for As2Se3, which is a disordered inorganic material and the
corresponding approximation are presented in Fig. 2. The approximate curve (solid
line) was obtained considering the example (27), where Wα = 0.3/L(s−α), Dα =
5 × 10−7/L2(s−α) with r = 5.

In Fig. 3 we present the second set of data, for the organic complex trinitrofluoreno-
ne-polyvinylcarbazole (TNF-PVK), and the corresponding approximation (solid line),
from example (26), where Wα = 0.43/L(s−α) and Dα = 0.013/L2(s−α) with r =
5. Both data sets are well described with the approximate solutions obtained with
the presented method using dispersion parameter values in agreement with the ones
presented in [4].

5 Conclusions

An implicit numerical method for the approximate solution of the time-fractional
advection-dispersion equation is presented and used for the numerical simulation of
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Fig. 3 Experimental data
(symbol), digitized from Figure
6 of [4], and approximation
(solid line) obtained with the
numerical method from (26),
with r = 5

0.01 0.02 0.05 0.1 0.2 0.5 1. 2.

0.2

0.5

1.

2.

t ttr
I
t
I
t tr

the TOF experiment. The numerical scheme is unconditionally stable and is first order
accurate in time and space, when a uniform mesh is used in space and a uniform or
a graded mesh is used in time. When tested with some numerical examples, as it can
be seen in Tables 1, 2, 3 and 4, the first order convergence in space is observed, but
in time it seems to be a little bit higher especially if r increases until a certain value.
In our numerical computations the experimental convergence orders became the same
for grading exponents greater or equal to 5. This surely deserves further investigation
and this careful analysis will be carried out in a forthcoming paper where we intend
to analyse the influence of the grading exponent r in the achievement of the optimal
convergence order. Here this issue was not addressed, since our main concern was to
use a very small time step-size near the origin, and therefore we decided to choose
a reasonable high grading exponent (r = 5), in the numerical modelling of the TOF
experiment. As it can be seen in Figs. 2 and 3, the obtained numerical results are in
good agreement with two sets of experimental data.
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